Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 250
Filtrar
1.
Lasers Med Sci ; 39(1): 112, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38656634

RESUMO

PURPOSE: To measure the dynamic characteristics of the flow field in a complex root canal model activated by two laser-activated irrigation (LAI) modalities at different activation energy outputs: photon-induced photoacoustic streaming (PIPS) and microshort pulse (MSP). METHODS: A phase-locked micro-scale Particle Image Velocimetry (µPIV) system was employed to characterise the temporal variations of LAI-induced velocity fields in the root canal following a single laser pulse. The wall shear stress (WSS) in the lateral root canal was subsequently estimated from the phase-averaged velocity fields. RESULTS: Both PIPS and MSP were able to generate the 'breath mode' of the irrigant current under all tested conditions. The transient irrigation flush in the root canal peaked at speeds close to 6 m/s. However, this intense flushing effect persisted for only about 2000 µs (or 3% of a single laser-pulse activation cycle). For MSP, the maximum WSS magnitude was approximately 3.08 Pa at an activation energy of E = 20 mJ/pulse, rising to 9.01 Pa at E = 50 mJ/pulse. In comparison, PIPS elevated the WSS to 10.63 Pa at E = 20 mJ/pulse. CONCLUSION: Elevating the activation energy can boost the peak flushing velocity and the maximum WSS, thereby enhancing irrigation efficiency. Given the same activation energy, PIPS outperforms MSP. Additionally, increasing the activation frequency may be an effective strategy to improve irrigation performance further.


Assuntos
Reologia , Humanos , Cavidade Pulpar/efeitos da radiação , Irrigação Terapêutica/métodos , Irrigação Terapêutica/instrumentação , Lasers , Irrigantes do Canal Radicular , Técnicas Fotoacústicas/métodos , Preparo de Canal Radicular/métodos , Preparo de Canal Radicular/instrumentação
2.
Macromol Biosci ; : e2400036, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38621113

RESUMO

Dental implant surgery is a procedure that replaces damaged or missing teeth with an artificial implant. During this procedure, guided bone regeneration (GBR) membranes are commonly used to inhibit the migration of epithelium and GBR at the surgical sites. Due to its biodegradability, good biocompatibility, and unique biological properties, gelatin (GT) is considered a suitable candidate for guiding periodontal tissue regeneration. However, GT-based membranes come with limitations, such as poor mechanical strength and mismatched degradation rates. To confront this challenge, a series of GT/poly(4-hydroxybutyrate) (P4HB) composite membranes are fabricated through electrospinning technology. The morphology, composition, wetting properties, mechanical properties, biocompatibility, and in vivo biodegradability of the as-prepared composite membranes are carefully characterized. The results demonstrate that all the membranes present excellent biocompatibility. Moreover, the in vivo degradation rate of the membranes can be manipulated by changing the ratio of GT and P4HB. The results indicate that the optimized GT/P4HB membranes with a high P4HB content (75%) may be suitable for periodontal tissue engineering because of their good mechanical properties and biodegradation rate compatible with tissue growth.

3.
Sci Adv ; 10(14): eadn6519, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38569036

RESUMO

Synthesizing single-walled carbon nanotubes (SWCNTs) with a narrow chirality distribution is essential for obtaining pure chirality materials through postgrowth sorting techniques. Using carbon monoxide chemical vapor deposition, we devise a ruthenium (Ru) catalyst supported by silica for the bulk production of SWCNTs containing only a few (n, m) species. The result is attributed to the limited carbon dissociation on the supported Ru clusters, favoring the growth of only small-diameter SWCNTs at comparable growth rates. The resulting materials expedite high-purity single chirality separation using gel chromatography, leading to unprecedented yields of 3.5% for (9, 1) and 5.2% for (9, 2) nanotubes, which surpass those separated from HiPco SWCNTs by two orders of magnitude. This work sheds light on the large-quantity synthesis of SWCNTs with enriched species beyond near-armchair ones for their high-yield separation.

4.
Nat Metab ; 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609677

RESUMO

Streptomyces has the largest repertoire of natural product biosynthetic gene clusters (BGCs), yet developing a universal engineering strategy for each Streptomyces species is challenging. Given that some Streptomyces species have larger BGC repertoires than others, we proposed that a set of genes co-evolved with BGCs to support biosynthetic proficiency must exist in those strains, and that their identification may provide universal strategies to improve the productivity of other strains. We show here that genes co-evolved with natural product BGCs in Streptomyces can be identified by phylogenomics analysis. Among the 597 genes that co-evolved with polyketide BGCs, 11 genes in the 'coenzyme' category have been examined, including a gene cluster encoding for the cofactor pyrroloquinoline quinone. When the pqq gene cluster was engineered into 11 Streptomyces strains, it enhanced production of 16,385 metabolites, including 36 known natural products with up to 40-fold improvement and several activated silent gene clusters. This study provides an innovative engineering strategy for improving polyketide production and finding previously unidentified BGCs.

5.
Small ; : e2402124, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38593327

RESUMO

Developing a silicone elastomer with high strength, exceptional toughness, good crack tolerance, healability, and recyclability, poses significant challenges due to the inherent trade-offs between these properties. Herein, the design of silicone-based elastomers with a nanoscopic microphase separation structure and comprehensive mechanical properties is achieved by combining bi-incompatible soft segments and multi-scale hydrogen bonds. The formation of multi-scale hydrogen bonds involving urethane, urea, and 2-ureido-4[1H]-pyrimidinone (UPy) facilitates efficient reversible crosslinking of the synthesized polymer containing thermodynamically incompatible poly(dimethylsiloxane) (PDMS) and poly(propylene glycol) (PPG). The dynamic dissociation and recombination of hydrogen bonds, coupled with the forced compatibility and spontaneous separation of bi-incompatible soft segments, can effectively dissipate energy, particularly in the crack region during the stretching process. The obtained silicone-based elastomer exhibits a high break strength of 8.0 MPa, good elongation at break of 1910%, ultrahigh toughness of 67.8 MJ m-3, and unprecedented fracture energy of 31.8 kJ m-2 while maintaining their thermal stability, hydrophobicity, healability, and recyclability. This resilient and long-lasting silicone-based elastomer exhibits significant potential for use in flexible electronic devices.

6.
J Am Chem Soc ; 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38593469

RESUMO

Hydrolytically stable materials exhibiting a wide range of programmable water sorption behaviors are crucial for on-demand water sorption systems. While notable advancements in employing metal-organic frameworks (MOFs) as promising water adsorbents have been made, developing a robust yet easily tailorable MOF scaffold for specific operational conditions remains a challenge. To address this demand, we employed a topology-guided linker installation strategy using NU-600, which is a zirconium-based MOF (Zr-MOF) that contains three vacant crystallographically defined coordination sites. Through a judicious selection of three N-heterocyclic auxiliary linkers of specific lengths, we installed them into designated sites, giving rise to six new MOFs bearing different combinations of linkers in predetermined positions. The resulting MOFs, denoted as NU-606 to NU-611, demonstrate enhanced structural stability against capillary force-driven channel collapse during water desorption due to the increased connectivity of the Zr6 clusters in the resulting MOFs. Furthermore, incorporating these auxiliary linkers with various hydrophilic N sites enables the systematic modulation of the pore-filling pressure from about 55% relative humidity (RH) for the parent NU-600 down to below 40% RH. This topology-driven linker installation strategy offers precise control of water sorption properties for MOFs, highlighting a facile route to design MOF adsorbents for use in water sorption applications.

7.
Bioorg Chem ; 147: 107356, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38604021

RESUMO

Developing "turn on" fluorescent probes was desirable for the detection of the effective anticoagulant agent heparin in clinical applications. Through combining the aggregation induced emission (AIE) fluorogen tetraphenylethene (TPE) and heparin specific binding peptide AG73, the promising "turn on" fluorescent probe TPE-1 has been developed. Nevertheless, although TPE-1 could achieve the sensitive and selective detection of heparin, the low proteolytic stability and undesirable poor solubility may limit its widespread applications. In this study, seven TPE-1 derived fluorescent probes were rationally designed, efficiently synthesized and evaluated. The stability and water solubility were systematically estimated. Especially, to achieve real-time monitoring of proteolytic stability, the novel Abz/Dnp-based "turn on" probes that employ the internally quenched fluorescent (IQF) mechanism were designed and synthesized. Moreover, the detection ability of synthetic fluorescent probes for heparin were systematically evaluated. Importantly, the performance of d-type peptide fluorescent probe XH-6 indicated that d-type amino acid substitutions could significantly improve the proteolytic stability without compromising its ability of heparin sensing, and attaching solubilizing tag 2-(2-aminoethoxy) ethoxy) acid (AEEA) could greatly enhance the solubility. Collectively, this study not only established practical strategies to improve both the water solubility and proteolytic stability of "turn on" fluorescent probes for heparin sensing, but also provided valuable references for the subsequent development of enzymatic hydrolysis-resistant d-type peptides based fluorescent probes.

8.
Foods ; 13(6)2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38540907

RESUMO

Aquatic products are gaining popularity due to their delicacy and high nutrient value. However, they are perishable, with a short shelf-life. Frozen storage is associated with adverse effects, leading to protein oxidation and degradation, thereby altering the protein's structural integrity and subsequently influencing the palatability of protein-based food products. To address these challenges, novel antifreeze peptides have gained significant attention. Antifreeze peptides are a class of small molecular weight proteins or protein hydrolysates that offer protection to organisms in frozen or sub-frozen environments. They offer distinct advantages over conventional commercial antifreeze agents and natural antifreeze proteins. This review provides an overview of the current state of research on antifreeze agents, elucidates their characteristics and mechanisms, and examines their applications in aquatic products. Furthermore, the article offers insights into the prospective development and application prospects of antifreeze peptides.

9.
Small ; : e2401226, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38511543

RESUMO

Electroredox of organics provides a promising and green approach to producing value-added chemicals. However, it remains a grand challenge to achieve high selectivity of desired products simultaneously at two electrodes, especially for non-isoelectronic transfer reactions. Here a porous heterostructure of Mo2C@Co-NC is successfully fabricated, where subnanometre ß-Mo2C clusters (<1 nm, ≈10 wt%) are confined inside porous Co, N-doped carbon using metalorganic frameworks. It is found that Co species not only promote the formation of ß-Mo2C but also can prevent it from oxidation by constructing the heterojunctions. As noted, the heterostructure achieves >96% yield and 92% Faradaic efficiency (FE) for aldehydes in anodic alcohol oxidation, as well as >99.9% yield and 96% FE for amines in cathodal nitrocompounds reduction in 1.0 M KOH. Precise control of the reaction kinetics of two half-reactions by the electronic interaction between ß-Mo2C and Co is a crucial adjective. Density functional theory (DFT) gives in-depth mechanistic insight into the high aldehyde selectivity. The work guides authors to reveal the electrooxidation nature of Mo2C at a subnanometer level. It is anticipated that the strategy will provide new insights into the design of highly effective bifunctional electrocatalysts for the coproduction of more complex fine chemicals.

10.
Angew Chem Int Ed Engl ; 63(7): e202318645, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38155561

RESUMO

Borane-based Lewis acids (LA) play an indispensable role in the Lewis pair (LP) mediated polymerization. However, most borane-based LPs are moisture- and air-sensitive. Therefore, development of moisture and air-stable borane-based LP is highly desirable. To achieve this goal, the concept of "aggregation induced enlargement effects" by chemically linking multiple borane within a nanoscopic confinement was conceived to create macromolecular LA. Accordingly, an extremely moisture and air stable macromolecular borane, namely, PVP-1B featuring poly(4-vinylphenol) backbone, was constructed. The concentration of borane active site is greatly higher than average concentration due to local confinement. Therefore, an enhanced activity was observed. Moreover, the local LA aggregation effects allow its tolerance to air and large amount of chain transfer agent. Consequently, PVP-1B showed remarkable efficiency for propylene oxide (PO) polymerization at 25 °C (TOF=27900 h-1 ). Furthermore, it enables generation of well-defined telechelic poly (CHO-alt-CO2 ) diol (0.6-15.3 kg/mol) with narrow Ds via copolymerizing cyclohexene oxide and CO2 at 80 °C. This work indicates unifying multiple borane within a polymer in a macromolecular level shows superior catalytic performance than constructing binary, bi(multi)functional systems in a molecular level. This paves a new way to make functional polyethers.

11.
ACS Biomater Sci Eng ; 10(1): 599-606, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38153378

RESUMO

Thermoplastic polyurethanes (TPUs) are extensively utilized in the biomedical field due to their exceptional mechanical properties and biocompatibility. However, the lack of antibacterial activity limits their application ranges. Nanoscopic particle-based additives with inherent antibacterial characteristics are regarded as promising strategies to prevent biomaterials-associated infection. Herein, a novel polymeric nanoparticle is prepared, which integrates chemically cross-linked epsilon-poly-l-lysine (CPL) and anionic surfactant-docusate sodium (DS). The cross-linked epsilon-poly-l-lysine/docusate sodium (CPL/DS) nanoparticle can be well dispersed in organic solvent and a polymer matrix, which is beneficial to endowing TPUs with synergistic miscibility and antibacterial properties. An antibacterial test showed that the CPL/DS nanoparticles have strong antibacterial activity against S. aureus. Moreover, the results of antibacterial experiments in vitro revealed that almost 100% of S. aureus could be killed by CPL/DS nanoparticle-embedded TPU film with a content of 0.5 wt %. In addition, all of the CPL/DS modified TPU films showed good cytocompatibility in vitro. Consequently, this kind of CPL/DS nanoplatform has great potential to serve as a safe and high-efficient bactericidal agent for endowing biomedical devices with bactericidal property.


Assuntos
Ácido Dioctil Sulfossuccínico , Poliuretanos , Poliuretanos/farmacologia , Poliuretanos/química , Polilisina/farmacologia , Staphylococcus aureus , Antibacterianos/farmacologia , Antibacterianos/química , Polímeros/química , Peptídeos
12.
Plants (Basel) ; 12(23)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38068671

RESUMO

With-No-Lysine (WNK) kinases are a subfamily of serine/threonine protein kinases. WNKs are involved in plant abiotic stress response and circadian rhythms. However, members of the WNK subfamily and their responses to abiotic and biotic stresses in Gossypium hirsutum have not been reported. In this study, 26 GhWNKs were identified in G. hirsutum. The gene structure, conserved motifs, and upstream open reading frames (uORFs) of GhWNKs were identified. Moreover, GhWNKs regulation is predicted to be regulated by cis-acting elements, such as ABA responsive element (ABRE), MBS, and MYC. Furthermore, transcription factors including MIKC_MADS, C2H2, TALE, bZIP, Dof, MYB, bHLH, and HD-ZIP are projected to play a regulatory role in GhWNKs. The expression patterns of GhWNKs under normal conditions and biotic and abiotic stresses were evaluated, and their expression was found to vary. The expression patterns of several GhWNKs were induced by infiltration with Verticillium dahliae, suggesting that several GhWNKs may play important roles in the response of cotton to V. dahliae. Interestingly, a homoeologous expression bias within the GhWNKs was uncovered in upland cotton. Homoeologous expression bias within GhWNKs provides a framework to assist researchers and breeders in developing strategies to improve cotton traits by manipulating individual or multiple homeologs.

13.
Macromol Biosci ; : e2300388, 2023 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-37950916

RESUMO

Despite the advances in technology, bacterial infection associated with biomedical devices is still one of the most challenging issues in clinical practice. Incorporation of antimicrobial agents is regarded as an efficient way to combat medical device associated infectious. However, most of antimicrobial agents have high toxicity to host cells. Thus, fabrication of novel antimicrobial agents that simultaneously fulfill the requirements of antibacterial activity as well as biocompatibility is urgently needed. Herein, a series of water-insoluble antibacterial complexes based on hyperbranched poly-L-lysine (HBPL) and four different surfactants through non-covalent interactions are developed. Such kinds of surfactants have great effects on the antibacterial property of poly(ɛ-caprolactone) (PCL) films that incorporate with the HBPL-based complexes. The results reveal that the PCL films that doped with HBPL/phosphate ester surfactant complexes showed the highest bacterial killing efficiency. Moreover, the cytocompatibility of the composite films is also investigated. Hemolysis experiments indicate that all the films  had low hemolytic activities. Considering the excellent antimicrobial and cytocompatibility properties, this work believes that the optimized complexes have great potential to be used as antimicrobial agents in biomedical field.

14.
Biomaterials ; 303: 122368, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37977009

RESUMO

Reperfusion therapy is widely used to treat acute myocardial infarction. However, its efficacy is limited by myocardial ischemia-reperfusion injury (MIRI), which occurs paradoxically due to the reperfusion therapy and contributes to the high mortality rate of acute myocardial infarction. Systemic administration of drugs, such as antioxidant and anti-inflammatory agents, to reduce MIRI is often ineffective due to the inadequate release at the pathological sites. Functional biomaterials are being developed to optimize the use of drugs by improving their targetability and bioavailability and reducing side effects, such as gastrointestinal irritation, thrombocytopenia, and liver damage. This review provides an overview of controlled drug delivery biomaterials for treating MIRI by triggering antioxidation, calcium ion overload inhibition, and/or inflammation regulation mechanisms and discusses the challenges and potential applications of these treatments clinically.


Assuntos
Infarto do Miocárdio , Traumatismo por Reperfusão Miocárdica , Humanos , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Antioxidantes/uso terapêutico
15.
Nat Commun ; 14(1): 6179, 2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37794047

RESUMO

Hypertriglyceridemic pancreatitis (HTGP) is featured by higher incidence of complications and poor clinical outcomes. Gut microbiota dysbiosis is associated with pancreatic injury in HTGP and the mechanism remains unclear. Here, we observe lower diversity of gut microbiota and absence of beneficial bacteria in HTGP patients. In a fecal microbiota transplantation mouse model, the colonization of gut microbiota from HTGP patients recruits neutrophils and increases neutrophil extracellular traps (NETs) formation that exacerbates pancreatic injury and systemic inflammation. We find that decreased abundance of Bacteroides uniformis in gut microbiota impairs taurine production and increases IL-17 release in colon that triggers NETs formation. Moreover, Bacteroides uniformis or taurine inhibits the activation of NF-κB and IL-17 signaling pathways in neutrophils which harness NETs and alleviate pancreatic injury. Our findings establish roles of endogenous Bacteroides uniformis-derived metabolic and inflammatory products on suppressing NETs release, which provides potential insights of ameliorating HTGP through gut microbiota modulation.


Assuntos
Armadilhas Extracelulares , Microbioma Gastrointestinal , Pancreatite , Camundongos , Animais , Humanos , Armadilhas Extracelulares/metabolismo , Interleucina-17/metabolismo , Microbioma Gastrointestinal/fisiologia , Pancreatite/metabolismo , Taurina/metabolismo
16.
Nanoscale ; 15(37): 15415-15426, 2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37702995

RESUMO

Selective catalysis has always been an essential process for manufacturing various fine chemicals, such as food additives, pharmaceuticals and perfumes. Practically, pure target products are difficult to obtain even after complex purification procedures during industrial production. The development of a cost-effective, highly chemoselective and long-life catalyst may be an attractive solution, but such a catalyst is elusive. Herein, a novel class of amphiphilic N-doped carbon (NC), featuring graphitic carbon (GC) and highly dispersed Cu@Co NPs, was fabricated via simple calcination of a Cu2+-doped bimetallic metal-organic framework (MOF) precusor directly. Compared with monometallic Co@GC/NC, the side reaction of CO bond hydrogenation is obviously restrained, and thus, pure target product can be systematically obtained by Cu@Co@GC/NC, highlighting the high selectivity of Cu. More importantly, an amphiphilic characteristic in Cu@Co@GC/NC is a significant knob to integrate organic substrates with water very well. This amphiphilic material shows great potential as a field-deployable pathway for dispersible metal catalysts in organic systems.

17.
Natl Sci Rev ; 10(6): nwad051, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37181086

RESUMO

Coals and evaporites are commonly used as qualitative indicators of wet and dry environments in deep-time climate studies, respectively. Here, we combine geological records with climate simulations to establish quantitative relationships of coals and evaporites with temperature and precipitation over the Phanerozoic. We show that coal records were associated with a median temperature of 25°C and precipitation of 1300 mm yr-1 before 250 Ma. Afterwards, coal records appeared with temperatures between 0°C and 21°C and precipitation of 900 mm yr-1. Evaporite records were associated with a median temperature of 27°C and precipitation of 800 mm yr-1. The most remarkable result is that net precipitation associated with coal and evaporite records remained constant across time. The results here have important implications for quantifying climate conditions for other lithologic indicators of climate and for predicting exogenetic ore deposits.

18.
Macromol Biosci ; 23(10): e2300146, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37243394

RESUMO

Abdominal wall defect caused by surgical trauma, congenital rupture, or tumor resection may result in hernia formation or even death. Tension-free abdominal wall defect repair by using patches is the gold standard to solve such problems. However, adhesions following patch implantation remain one of the most challenging issues in surgical practice. The development of new kinds of barriers is key to addressing peritoneal adhesions and repairing abdominal wall defects. It is already well recognized that ideal barrier materials need to have good resistance to nonspecific protein adsorption, cell adhesion, and bacterial colonization for preventing the initial development of adhesion. Herein, electrospun poly(4-hydroxybutyrate) (P4HB) membranes infused with perfluorocarbon oil are used as physical barriers. The oil-infused P4HB membranes can greatly prevent protein attachment and reduce blood cell adhesion in vitro. It is further shown that the perfluorocarbon oil-infused P4HB membranes can reduce bacterial colonization. The in vivo study reveals that perfluoro(decahydronaphthalene)-infused P4HB membranes can significantly prevent peritoneal adhesions in the classic abdominal wall defects' model and accelerate defect repair, as evidenced by gross examination and histological evaluation. This work provides a safe fluorinated lubricant-impregnated P4HB physical barrier to inhibit the formation of postoperative peritoneal adhesions and efficiently repair soft-tissue defects.

19.
Angew Chem Int Ed Engl ; 62(23): e202302101, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37017109

RESUMO

Although great successes have been achieved, the preparation of closed-loop recyclable polyesters with high working temperatures still remains as a big challenge. Herein, we present the syntheses of a series of enantiopure bicyclic ether-ester monomers by upcycling of poly(3-hydroxybutyrate) bioplastic. The "living"/controlled ring-opening polymerizations of these enantiopure monomers to produce stereoregular polyesters with controlled molecular weights and well-defined chain ends were achieved. The effects of stereoconfiguration and substituent on polymerization kinetics and thermodynamics as well as the thermal properties of resultant polyesters were investigated. Of note, the stereoregular polyesters are semi-crystalline materials with melting temperatures up to 176 °C, even higher than the commodity polyolefin plastics. These polyesters can be depolymerized back to recover pristine monomers, thus successfully establishing a closed-loop life cycle.

20.
Angew Chem Int Ed Engl ; 62(25): e202303315, 2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37073925

RESUMO

Chemoselective terpolymerization can produce polymer materials with diverse compositions and sequential structures, and thus have attracted considerable attention in the field of polymer synthesis. However, the intrinsic complexity of three-component system also brings great chanllenge, in regard to the reactivity and selectivity of different monomers. Herein, we report the terpolymerization of CO2 /epoxide/anhydride by a binary organocatalytic C3 N3 -Py-P3 /TEB (triethylborane) system. Both the activity and chemoselectivity were highly dependent upon the molar ratio of C3 N3 -Py-P3 to TEB, and sequence-controlled poly(ester-carbonate) copolymers were readily synthesized through one-pot/one-step methodology by tuning the stoichiometric ratio of phosphazene/TEB. In particular, C3 N3 -Py-P3 /TEB with a molar ratio of 1/0.5 exhibited an unprecedentedly high chemoselectivity for ring-opening alternating copolymerization (ROAC) of cyclohexene oxide (CHO) and phthalic anhydride (PA) first and then ROAC of CO2 /CHO. Thus, well-defined triblock polycarbonate-b-polyester-b-polycarbonate copolymers can be produced from the mixture of CO2 , CHO and PA using a bifunctional initiator. With C3 N3 -Py-P3 /TEB=1/1, tapered copolymers were obtained, while random copolymers with high content of polycarbonate (PC) were synthesized with further increasing the amount of TEB. The mechanism of the unexpected chemoselectivity was further investigated by DFT calculations.


Assuntos
Boranos , Dióxido de Carbono , Dióxido de Carbono/química , Polímeros/química , Carbonatos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...